# Noise in Analog CMOS ICs 

## Gábor C. Temes

School of Electrical Engineering and
Computer Science
Oregon State University

March 2013

## Noise = Unwanted Signal

- Intrinsic (inherent) noise:
- generated by random physical effects in the devices.
- Interference (environmental) noise:
- coupled from outside into the circuit considered.
- Switching noise:
- charge injection, clock feedthrough, digital noise.
- Mismatch effects:
- offset, gain, nonuniformity, ADC/DAC nonlinearity errors.
- Quantization (truncation) "noise":
- in internal ADCs, DSP operations.


## Purpose and Topics Covered

- Purpose: Fast Estimation of Noise in Analog Integrated Circuits Before Computer Simulation. Topics Covered:
- The Characterization of Continuous and Sampled Noise;
- Thermal Noise in Opamps;
- Thermal Noise in Feedback Amplifiers;
- Noise in an SC Branch;
- Noise Calculation in Simple SC Stages;
- Sampled Noise in Opamps.


## Characterization of Continuous-Time Random Noise - (1)

- Noise $x(t)$ - e.g., voltage. Must be stationary as well as mean and variance ergodic.
- Average power defined as mean square value of $\boldsymbol{x}(\boldsymbol{t})$ :

$$
P_{a v}=\lim _{T \rightarrow \infty}\left\{\frac{1}{T} \int_{0}^{T} x^{2}(t) d t\right\}=E\left\{x^{2}(t)\right\}
$$

- For uncorrelated zero-mean noises

$$
E\left\{\left(x_{1}+x_{2}\right)^{2}\right\}=E\left\{x_{1}^{2}\right\}+E\left\{x_{2}^{2}\right\}
$$

- Power spectral density (PSD) $\boldsymbol{S}_{x}(f)$ of $\boldsymbol{x}(t): \boldsymbol{P}_{a v}$ contained in a 1 Hz BW at $f$. Hence $d \boldsymbol{P}_{a v}=S_{x}(f) \cdot d f$. Measured in $V^{2 \prime} / \mathrm{Hz}$. Even function of $f$.
- Filtered noise: if the filter has a voltage transfer function $\mathrm{H}(\mathrm{s})$, the output noise PSD is $\left|\boldsymbol{H}(j 2 \pi f)^{2}\right| S_{x}(f)$.


## Characterization of Continuous-Time Random Noise - (2)

- Average power in $f_{1}<f<f_{2}$ :

$$
P_{f_{1}, f_{2}}=\int_{f_{1}}^{f_{2}} S_{x}(f) d f
$$

Here, $S_{x}$ is regarded as a one-sided PSD.

Hence, $\boldsymbol{P}_{0, \infty}=\boldsymbol{P}_{\boldsymbol{a v}}$. So white noise has infinite power!? NO. Quantum effects occur when h.f $\sim k T$. Here, $h$ is the Planck constant. This occurs at tens of THz; parasitics will limit noise much before this!

- Amplitude distribution: probability density function(PDF) $\boldsymbol{p}_{\boldsymbol{x}}(\boldsymbol{x})$. $p_{x}\left(x_{I}\right) \Delta x$ : probability of $x_{I}<x<x_{I}+\Delta x$ occurring. E.g., $p_{x}(q)=1 / L S B$ for quantization noise $\boldsymbol{q}(t)$ if $|\boldsymbol{q}|<\boldsymbol{L S B} / \mathbf{2}, 0$ otherwise. Gaussian for thermal noise, often uniform for quantization noise.


## Characterization of Sampled-Data Random Noise

- Noise $x(n)-e . g .$, voltage samples.
- Ave. power:

$$
P_{a v}=E\left[\lim _{N \rightarrow \infty}\left\{\frac{1}{N+1} \sum_{n=0}^{N}\left|x(n)^{2}\right|\right\}\right]
$$

$\boldsymbol{P}_{\boldsymbol{a v}}$ is the mean square value of $\boldsymbol{x}(\boldsymbol{n})$.

- For sampled noise, $\boldsymbol{P}_{a v}$ remains invariant!
- Autocorrelation sequence of $\boldsymbol{x}(\boldsymbol{n})$ - shows periodicities!

$$
\begin{gathered}
r_{x}(k)=E\{x(n) \cdot x(n-k)\} \\
r_{x}(0)=\left[\begin{array}{lll}
P_{a v} & \text { of } & x(n)
\end{array}\right]=E\left\{|x(n)|^{2}\right\}
\end{gathered}
$$

- PSD of $\boldsymbol{x}(\boldsymbol{n}): S_{x}(f)=F\left[r_{x}(k)\right]$. Periodic even function of $f$ with a period $f_{c}$. Real-valued, non-negative.
- Power in $f_{1}<f<f_{2}: P_{f_{1}, f_{2}}=\int_{f_{1}}^{f_{2}} S_{x}(f) d f$

$$
P_{a v}=\int_{0}^{f_{f} / 2} S_{x}(f) d f=P_{0, f_{x} / 2}=E\left\{|x(n)|^{2}\right\}
$$

Sampled noise has finite power!

- PDF of $\boldsymbol{x}(\boldsymbol{n}): \boldsymbol{p}_{\boldsymbol{x}}(\boldsymbol{x})$, defined as before.


## Thermal Noise -(1)

Due to the random motion of carriers with the MS velocity $\propto T$.
Dominates over shot noise for high carrier density but low drift velocity, occurring, e.g., in a MOSFET channel.

Mean value of velocity, noise $V, I$ is 0 .
 resistive voltage source the maximum available noise power is hence

$$
\frac{\overline{E^{2}}}{4 \cdot R}=k \cdot T \cdot B W
$$

giving

$$
\overline{E^{2}}=4 \cdot k \cdot T \cdot B W \cdot R
$$


$k$ : Boltzmann constant, $1.38 \times 10^{\wedge}-23 \mathrm{~J} / \mathrm{K}$

## Bode's Noise Theorem

## - Passive RLC switched circuit:

$$
\begin{equation*}
\overline{v_{o}^{2}}=k T\left(\frac{1}{C_{\infty}}-\frac{1}{C_{0}}\right) . \tag{7}
\end{equation*}
$$

PAVAN= ALTERNATIVE APPROACH TO BODE'S NOISE THEOREM


Fig. 3. Physical interpretation of $C_{\infty}$ and $C_{0}=C_{\infty}$ is the looking-in capacitance of the network when all resistors and inductors are opened, and $C_{0}$ is the capacitance looking in when all the resistors and inductors are shorted.

## Bode's Noise Theorem

## - Example:

$1^{\text {st }}$ Int. Phase $\Phi_{\text {int1 }}$


$$
\begin{aligned}
& \text { + } \\
& \frac{n_{1, \text { 申int } 1}}{n_{i}}=\frac{0.2}{1+\frac{s}{1 / 0.8 R C}}, \quad \frac{n_{0, \text { int } 1}}{n_{i}}=\frac{0.4}{1+\frac{s}{1 / 0.8 R C}} \\
& \text { - } n_{1, \phi i n t 1}^{2}=0.2^{2} \frac{1}{2 \pi(0.8 R C)} \frac{\pi}{2} 8 k T R=\frac{0.1 k T}{C} \\
& \text { - } n_{0, \phi i n t 1}^{2}=\frac{0.4 k T}{C}
\end{aligned}
$$

## Thermal Noise - (2)

The probability density function of the noise amplitude follows a Gaussian distribution
$\overline{\mathrm{E}}_{\mathrm{E}}^{2} \quad p(E)=\frac{e^{-E^{2} / \overline{E^{2}}}}{\sqrt{\overline{E^{2}} \cdot 2 \pi}}$
Here, is the MS value of $\boldsymbol{E}$.


In a M®SFET, if it operates in the triode regıon, $\mathrm{K}=$ ras can de usea in the drain-source branch.
In the active region, averaging over the tapered channel, $\boldsymbol{R}=(\mathbf{3} / \mathbf{2}) / \boldsymbol{g}_{\boldsymbol{m}}$ results. The equivalent circuit is


$$
\overline{E^{2}(f)}=\frac{8 k T}{g_{m}}(P S D)
$$

## Noise Bandwidth

Let a white noise $\boldsymbol{x}(\boldsymbol{t})$ with a $\boldsymbol{P S D} S_{x}$ enter an LPF with a transfer function:

$$
H(s)=\frac{G_{0}}{s / \omega_{3-d B}+1}
$$

Here $\boldsymbol{G}_{\boldsymbol{0}}$ is the dc gain, and $\omega_{3-d B}$ is the $3-\mathrm{dB}$ BW of the filter. The MS value of the output noise will be the integral of $|\boldsymbol{H}|^{2} . S_{x}$, which gives

$$
\overline{x^{2}}=\frac{\omega_{3-\text {-lB }}^{2}}{4} G_{0}^{2} \cdot S_{x}
$$

Assume now that $x(t)$ is entered into an ideal LPF with the gain function:

$$
|H|=G_{0} \quad \text { if } f<f_{n}
$$

and 0 if $f>f_{n}$. The MS value of the output will then be:

$$
\overline{x^{2}}=f_{n} \cdot G_{0}^{2} \cdot S_{x}
$$

Equating the RHSs reveals that the two filters will have equivalent noise transfer properties if

$$
f_{n}=\frac{\omega_{3-d B}}{4}=\frac{\pi}{2} f_{3-d B}
$$

Here, $f_{n}$ is the noise bandwidth of the LPF.


## Analysis of $1 / f$ Noise in Switched MOSFET Circuits

# Analysis of $1 / f$ Noise in Switched MOSFET Circuits 

Hui Tian and Abbas El Gamal, Fellow, IEEE


#### Abstract

Analysis of $1 / f$ noise in MOSFET circuits is typi- cally performed in the frequency domain using the standard stacally performed in the frequency domain using the standard stationary $1 / f$ noise model. Recent experimental results, however, have shown that the estimates using this model can be quite inaccurate especially for switched circuits. In the case of a periodically switched transistor, measured $1 / f$ noise power spectral density (psd) was shown to be significantly lower than the estimate using the standard $1 / f$ noise model. For a ring oscillator, measured $1 / f$-induced phase noise psd was shown to be significantly lower than the estimate using the standard $1 / f$ noise model. For a source collower resel circuin, measured $1 / f$ nolse power $1 f$ model. In analyring noise in the follower reset circuit using frequency-domain analysis, a low cutoff frequency that is inversely proportionat to the circuit on-time is assumed. The choice of this low cutoff frequency is quite arbitrary and can cause significant inaccuracy in estimating noise power. Moreover, during reset, the circuit is not in steady state, and thus frequency-domain analysis does not apply. This paper proposes a nonstationary extension of the standard $1 / f$ noise model, which allows us to anulyze $1 / f$ noise in switched MOSFET circuits more accurately. Using our model, we analyze noise for the three aforementioned switched circuit examples and obtain results that are consistent with the reported measurements. Index Terms- $1 / f$ noise, CMOS image sensor, nonstationary noise model, periodically switched circuits, phase noise, ring osillator, time-domain noise analysis. especially for switched circuits. An important class of such cir cuits is periodically switched circuits, which are widely used in RF applications, such as switched capacitor networks, modula tors and demodulators, and frequency converters. In the simplest case of a periodically switched transistor, it was shown that the measured drain voltage $1 / f$ noise power spectral density (psd) [5]-[7] is much lower than the estimate using the standard $1 / f$ noise model. Another example that has recently been receiving much attention is $1 / f$-induced phase noise in CMOS oscillators [8]-[10]. Unlike the amplitude fluctuations, which can bo practically eliminated by applying limiters to the output signal, phase noise cannot be reduced in the same manner. As a result, phase noise limits the available channels in wireless communication. Recent measurements [7] show that the $1 / f$-induced phase noise psd in ring oscillators is much lower than the estimate using the standard $1 / f$ noise model. Yet another example of a switched circuit is the source follower reset circuit, which is often used in the output stage of a charge-coupled device (CCD) image sensor [11] and the pixel circuit of a CMOS active pixel sensor (APS) [12]. To find the output noise power due to $1 / f$ noise, frequency-domain analysis is typically performed using the standard $1 / f$ noise model. A low cutoff frequency $f_{L}$ that is inversely proportional to the


- $1 / f$ noise can be represented as threshold voltage variation.
- If the switch is part of an SC branch, it is unimportant. In opamps, it is critical!
- In a chopper or modulator circuit, it may be very important. See the TCAS paper shown.


## Thermal Op-Amp Noise - (1)

Simple op-amp input stage [3]:


With device noise PSD: $\hat{V_{n i}^{2}}=(8 / 3) k T / g_{m i}$
Equivalent input noise PSD: $V_{n q}^{2} \hat{\text { n }}(f)=\frac{16}{3} \frac{k T}{g_{m 1}}\left[1+\frac{g_{m 3}}{g_{m 1}}\right] \cong \frac{16}{3} \frac{\mathrm{kT}}{g_{m 1}} \quad V^{2} / \mathrm{Hz}$ for $g_{m 1} \gg g_{m 3}$. It can be represented by a noisy resistor $\boldsymbol{R}_{N}=(8 / 3) k T / g_{m 1}$ at one input terminal. Choose $g_{m 1}$ as large as practical! All noises thermal - white. Opamp dynamics ignored.

## Thermal Op-Amp Noise - (2)

All devices in active region, $[i d(f)]^{2}=(8 / 3) k \boldsymbol{T} \cdot \boldsymbol{g}_{\boldsymbol{m}}$. Consider the short-circuit output current $\boldsymbol{I}_{\boldsymbol{O}, s h}$ of the opamp. The output voltage is $\boldsymbol{I}_{\boldsymbol{o}, \boldsymbol{s} \boldsymbol{h}} \cdot \boldsymbol{R}_{\boldsymbol{o}}$.

If the th device PSD is considered, its contribution to the PSD of $\boldsymbol{I}_{0, s h}$ is proportional to $g_{m i}$. Referring it to the input voltage, it needs to be divided by the square of the input device $\boldsymbol{g}_{\boldsymbol{m}}$, i.e, by $\boldsymbol{g}_{\boldsymbol{m} 1}{ }^{2}$.

Hence, the input-referred noise PSD is proportional to $g_{m} / g_{m l}{ }^{2}$. For the noise of the input device, this factor becomes $1 / g_{m 1}$.

Conclusions: Choose input transconductances $\left(g_{m 1}\right)$ as large as possible. For all non-input devices (loads, current sources, current mirrors, cascade devices) choose $g_{m}$ as small as possible!

## Noisy Op-Amp with Compensation

Op-amp has thermal input noise PSD $\boldsymbol{P}_{\boldsymbol{n} \boldsymbol{i}}=\mathbf{1 6 k T} / \mathbf{3} \boldsymbol{g}_{\boldsymbol{m} \boldsymbol{l}}$, where $\boldsymbol{g}_{\boldsymbol{m} \boldsymbol{I}}$ is the transconductance of the input devices.

Single-pole model; voltage gain $A(s)=A_{0} \omega_{3-d B} /\left(s+\omega_{3-d B}\right)$, where $A_{0}$ is the DC gain, $\omega_{3-d B}$ is the $3-\mathrm{dB}$ BW (pole frequency), and $\omega_{u}=A_{0} \omega_{3-d B}$ is the unity-gain BW of the op-amp. For folded-cascode telescopic and 2-stage OTAs, usually $\omega_{u}=g_{m I} / C$, where $C$ is the compensation capacitor. Open-loop noise BW is $f_{n}=\boldsymbol{g}_{\boldsymbol{m l}} / \mathbf{4} \boldsymbol{A}_{0} \boldsymbol{C}$, and the open-loop noise gain at DC is $\boldsymbol{A}_{0}$. Hence, the open-loop output noise power is

$$
P_{o n} \cong \frac{16}{3} \frac{k T}{g_{m 1}} A_{0}^{2} \frac{g_{m 1}}{4 A_{0} C}=\frac{4 A_{0} k T}{3 C}
$$

## Noisy Op-Amp with Unity-Gain Feedback

If the op-amp is in a unity-gain configuration, then (for $\boldsymbol{A}_{0} \gg 1$ ) the noise bandwidth of the stage becomes $\boldsymbol{A}_{\boldsymbol{f}} f_{n}$, and the DC noise gain is 1 . Hence, the output (and input) thermal noise power is

$$
P_{n} \cong \frac{16 k T}{3 g_{m 1}} \frac{g_{m 1}}{4 C}=\frac{4 k T}{3 C}
$$

(This result is very similar to the $\boldsymbol{k T} / \boldsymbol{C}$ noise power formula of the simple R-C circuit!)


## Noisy Op-Amp in an SC Gain Stage

A more general feedback stage:


Let $G_{i}=Y_{1} / Y_{2}$ be constant. Then the noise voltage gain is the singlepole function $A_{n}(s)=V_{o n}(s) / V_{n}(s)=\omega_{u} /\left(s+\omega_{3-d B}^{\prime}\right)$ where $\omega_{3-d B}^{\prime}=\omega_{u} /\left(1+G_{i}\right)$ is the $3-\mathrm{dB}$ frequency of $\boldsymbol{A}_{n}(j \omega)$. The DC noise gain is $\omega_{u} / \omega_{3-d B}^{\prime}=1+G_{i}$, and the noise BW of the stage is $f_{n}^{\prime}=g_{m 1} /\left[4 C\left(1+G_{i}\right)\right]$. Hence, the output thermal noise power is

$$
P_{n o} \cong \frac{16 k T}{3 g_{m 1}}\left(1+G_{i}\right)^{2} \frac{g_{m 1} / 4 C}{1+G_{i}}=\frac{4\left(1+G_{i}\right) k T}{3 C},
$$

and the input-referred thermal noise power is $\boldsymbol{P}_{n i}=(4 / 3) k T \beta / C$, where $\beta=1 /\left(G_{i+1}\right)$ is the feedback factor.
$\boldsymbol{P}_{n i}$ is smaller for a higher gain $\boldsymbol{G}_{\boldsymbol{i}}$, so a higher SNR is possible for higher stage gain.

## Switched-Capacitor Noise - (1)

Two situations; example:


Situation 1: only the sampled values of the output waveform matter; the output spectrum may be limited by the DSP, and hence $V_{R M S, n}$ is reduced. Find $V_{R M S}$ from $\sqrt{k T C}$ charges; adjust for DSP effects. Noise can be estimated by hand analysis.

Situation 2: the complete output waveform affects the SNR, including the S/H and direct noise components. Usually the S/H noise dominates at low frequencies. High-frequency noise is reduced by the reconstruction filter. Needs CAD analysis.

## Sampling the Noise



## Switched-Capacitor Noise


(a)


Thermal noise in a switched-capacitor branch: (a) circuit diagram; (b) clock signal; (c) output noise; (d) direct noise component; (e) sampled-and-held noise component. The noise power is $k T / C$ in every time segment.

## Switched-Capacitor Noise Spectra





For $f \ll f_{c}, S^{S / H} \gg S^{D}$. Sampled $P S D=2 k T / f s C$; the unsampled $P S D$ $=4 \mathrm{kTRon}$.
Their ratio is $1 /(2 f s$. Ron.C) >> 1 !! Sampling penalty.

## Switched-Capacitor Noise

The MS value of samples in $V_{c n}{ }^{S / H}$ is unchanged:

$$
\overline{\left(V_{c n}^{S / H}\right)^{2}}=k T / C
$$

Regarding it as a continuous-time signal, at low frequency its one-sided PSD is

$$
S^{s / H}(f) \cong \frac{2(1-m)^{2} k T}{f_{c} C}
$$

while that of the direct noise is

$$
\begin{gathered}
S^{d}(f) \cong \frac{m k T}{f_{s w} C}, \\
\frac{S^{S / H}}{S^{d}}=\frac{2(1-m)^{2}}{m} \frac{f_{s w}}{f_{c}} .
\end{gathered}
$$

Since we must have $f_{s w} / f_{c}>2 / m$, usually $\left|S^{S / H}\right| \gg\left|S^{d}\right|$ at low frequencies.
(See also the waveform and spectra.)
See Gregorian-Temes book, pp. 505-510 for derivation.

## Calculation of SC Noise - (1)

In the switch-capacitor branch, when the switch is on, the capacitor charge noise is lowpass-filtered by $\boldsymbol{R}_{\boldsymbol{o n}}$ and $\boldsymbol{C}$. The resulting charge noise power in $\boldsymbol{C}$ is $\boldsymbol{k T C}$. It is a colored noise, with a noisebandwidth $f_{n}=\mathbf{1} /\left(4 \cdot \boldsymbol{R}_{o n} \cdot C\right)$. The low-frequency PSD is $\mathbf{4 k T \boldsymbol { R } _ { o n }}$.

When the switch operates at a rate $f_{c} \ll f_{n}$, the samples of the charge noise still have the same power $\boldsymbol{k T C}$, but the spectrum is now white, with a $\boldsymbol{P S D}=\mathbf{2 k T C} / \boldsymbol{f}_{\boldsymbol{c}}$. For the situation when only discrete samples of the signal and noise are used, this is all that we need to know.

For continuous-time analysis, we need to find the powers and spectra of the direct and $\mathrm{S} / \mathrm{H}$ components when the switch is active. The direct noise is obtained by windowing the filtered charge noise stored in C with a periodic window containing unit pulses of length $\boldsymbol{m} / \boldsymbol{f}_{c}$. This operation (to a good approximation) simply scales the PSD, and hence the noise power, by $m$. The low-frequency PSD is thus $\boldsymbol{4 m k T R}_{\boldsymbol{o n}}$. For complex circuits, CAD is required to find noise.

## Calculation of SC Noise (summary) - (2)

To find the PSD of the S/H noise, let the noise charge in C be sampled-and-held at fc, and then windowed by a rectangular periodic window

$$
\begin{array}{ll}
w(t)=0 & \text { for } n / f_{c}<t<n / f_{c}+m / f_{c} \\
w(t)=1 & \text { for } n / f_{c}+m / f_{c}<t<(n+1) / f_{c} \\
& n=0,1,2, \ldots
\end{array}
$$

Note that this windowing reduces the noise power by ( $1-m$ ) squared(!), since the $\mathrm{S} / \mathrm{H}$ noise is not random within each period.

Usually, at low frequencies the S/H noise dominates, since it has approximately the same average power as the direct noise, but its PSD spectrum is concentrated at low frequencies. As a first estimate, its PSD can be estimated at $2(1-m)^{2} k T / f_{c} \cdot C$ for frequencies up to $f_{c} / 2$.

## Circuit Example: Lossy Integrator with Ideal Op-Amp[4]


$\phi_{i a}$ : advanced cutoff phase
RMS noise charges acquired by $\boldsymbol{C}_{\boldsymbol{i}}$ during $\phi_{I}=1$ :

$$
q_{i}^{j}=C_{i} \sqrt{k T / C_{i}}=\sqrt{k T C_{i}}, i, j=1,2
$$

with $V_{i n}$ set to 0 .

RMS noise charge delivered into $\boldsymbol{C}_{3}$ as $\phi_{2} \rightarrow 0$, assuming OTA:

From $\boldsymbol{C}_{1}: \quad q_{1}=\sqrt{2 k T C_{1}} \frac{C_{3}}{C_{2}+C_{3}}$
Form $\boldsymbol{C}_{2}: \quad q_{2}=\left[k T C_{2}\left(\frac{C_{3}}{C_{2}+C_{3}}\right)^{2}+k T \frac{C_{2} C_{3}}{C_{2}+C_{3}}\right]^{1 / 2}$
Total: $\quad q_{3}=\frac{C_{3}}{C_{2}+C_{3}} \sqrt{k T}\left[2 C_{1}+2 C_{2}+\frac{C_{2}^{2}}{C_{3}}\right]^{1 / 2}$
Input-referred RMS noise voltage:

$$
\begin{gathered}
V_{i n, n}=q_{3} \frac{C_{2}+C_{3}}{C_{1} C_{3}}=\frac{\sqrt{k T}}{C_{1}}\left[2 C_{1}+2 C_{2}+\frac{C_{2}^{2}}{C_{3}}\right]^{1 / 2} \\
V_{i n, n} \cong \frac{1}{C_{1}} \sqrt{k T\left(C_{1}+C_{2}\right)} \text { for } \quad C_{2} \ll C_{3} .
\end{gathered}
$$

$\boldsymbol{V}_{\boldsymbol{i n}, \boldsymbol{n}}$ and $\boldsymbol{V}_{\boldsymbol{i n}}$ are both low-pass filtered by the stage.

## Sampled Op-Amp Noise Example [4]

- $\phi_{1}=1$

Direct noise output voltage $=V_{\text {neq }}$


- $\phi_{2}=1$

Charges delivered by $C_{1}$ and $C_{2}$ :

$$
-C_{1}\left(V_{n e q}+V_{i n}\right)+C_{2}\left(V_{0}-V_{n e q}\right) .
$$

Charge error $-\left(C_{1}+C_{2}\right) V_{\text {neq }}$.

- Input-referred error voltage

$$
V_{n e q}\left(1+C_{2} / C_{1}\right) .
$$

## Reference

[1] R. Gregorian and G.C. Temes, Analog MOS ICs for Signal Processing, Wiley, 1986
[2] B. Razavi, Design of Analog CMOS ICs, McGraw-Hill, 2000
[3] D.A. Johns and K. Martin, Analog IC Design, Wiley, 1997
[4] D. Kerth, Practical Design for Analog Discrete-Time Processing, ISSCC Tutorial, 1997
[5] J.H. Fisher, "Noise sources and calculation techniques for SC filters," JSSC, Aug. 1982
[6] L. Toth et al., "Noise analysis of ideal SC networks," TCAS - I, March 1999

